¾ÅÓÎÌåÓý

News

Study suggests that estrogen may drive nicotine addiction in women

Research findings open the door to targeted therapies for controlling nicotine use
Nancy D. Lamontagne
March 25, 2024

A newly discovered feedback loop involving estrogen may explain why women might become dependent on nicotine more quickly and with less nicotine exposure than men. The research could lead to new treatments for women who are having trouble quitting nicotine-containing products such as cigarettes.

Sally Pauss is a doctoral student at the University of Kentucky College of Medicine in Lexington. She led the project.

A newly discovered feedback loop involving estrogen might explain why it can be harder for women to quit nicotine compared to men. The findings being presenting at Discover BMB in San Antonio could lead to new treatments that help women kick the habit.
A newly discovered feedback loop involving estrogen might explain why it can be harder for women to quit nicotine compared to men. The findings being presenting at Discover BMB in San Antonio could lead to new treatments that help women kick the habit.

“Studies show that women have a higher propensity to develop addiction to nicotine than men and are less successful at quitting,” said Pauss, who is working under the supervision of Terry D. Hinds Jr., an associate professor. “Our work aims to understand what makes women more susceptible to nicotine use disorder to reduce the gender disparity in treating nicotine addiction.”

The researchers found that the sex hormone estrogen induces the expression of olfactomedins, proteins that are suppressed by nicotine in key areas of the brain involved in reward and addiction. The findings suggest that estrogen–nicotine–olfactomedin interactions could be targeted with therapies to help control nicotine consumption.

Pauss will present the research at , the annual meeting of the ¾ÅÓÎÌåÓý, which will be held March 23–26 in San Antonio.

“Our research has the potential to better the lives and health of women struggling with substance use,” she said. “If we can confirm that estrogen drives nicotine seeking and consumption through olfactomedins, we can design drugs that might block that effect by targeting the altered pathways. These drugs would hopefully make it easier for women to quit nicotine.”

For the new study, the researchers used large sequencing datasets of estrogen-induced genes to identify genes that are expressed in the brain and exhibit a hormone function. They found just one class of genes that met these criteria: those coding for olfactomedins. They then performed a series of studies with human uterine cells and rats to better understand the interactions between olfactomedins, estrogen and nicotine. The results suggested that estrogen activation of olfactomedins — which is suppressed when nicotine is present — might serve as a feedback loop for driving nicotine addiction processes by activating areas of the brain’s reward circuitry such as the nucleus accumbens.

The researchers are now working to replicate their findings and definitively determine the role of estrogen. This knowledge could be useful for those taking estrogen in the form of oral contraceptives or hormone replacement therapy, which might increase the risk of developing a nicotine use disorder.

The investigators also want to determine the exact olfactomedin-regulated signaling pathways that drive nicotine consumption and plan to conduct behavioral animal studies to find out how manipulation of the feedback loop affects nicotine consumption.

Sally Pauss will present this research during a poster session from 4:30–6:30 p.m. CDT on Monday, March 25, in the exhibit hall of the Henry B. González Convention Center (Poster Board No. 152) (). 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Nancy D. Lamontagne

Nancy D. Lamontagne is a science writer and editor at Creative Science Writing based in Chapel Hill, North Carolina.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Journal News

Bacterial enzyme catalyzes body odor compound formation

June 27, 2025

Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
Profile

Neurobiology of stress and substance use

June 19, 2025

MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.