
MCSs stick the landing
Membrane contact sites, or MCSs, represent the ultimate intracellular duct tape — binding organelles together within eukaryotic cells to promote growth. Enabled by tethering proteins, MCSs are a coordinating nexus that fosters intermembrane exchange and signaling.

As conduits for lipid and small metabolite transfer between organelle membranes, MCSs are key regulators of metabolism. As structural elements linking intracellular membranes, MCSs control membrane organization and protect against membrane stresses. As platforms for important signaling receptors, MCSs initiate cellular responses to regulatory or environmental cues.
The recognition of MCSs as key regulators of cell growth is underscored by new discoveries of MCS function in cellular disease and infection.
Keywords: Membrane contact sites, membrane stress, mitochondrial regulation, nonvesicular transport, lipid transport, membrane structure, lipid metabolism, lipid regulation.
Who should attend: Molecular cell biologists and membrane biochemists who marvel at how membrane dynamics regulates metabolic function and organelle organization.
Theme song: by Lionel Richie
This session is powered by the unsung heroes of membrane and lipid research.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.
Membrane contact sites
Regulation of lipid transfer and metabolism at membrane contact sites
Hongyuan Yang, University of Texas Health Science Center at Houston

Jen Liou (chair), University of Texas Southwestern Medical Center
Alexandre Toulmay, University of Texas Southwestern Medical Center
Arash Bashirullah, University of Wisconsin–Madison
Membrane signaling at membrane contact sites
Thomas Simmen (chair), University of Alberta
Jay Tan, University of Pittsburgh
Alissa Weaver, Vanderbilt University
Chi-Lun Chang, St. Jude Children's Research Hospital
Specialized membrane contact site functions
Isabelle Derré, University of Virginia
Aaron Neiman, Stony Brook University
Christopher T. Beh (chair), Simon Fraser University
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.