
Our coolest superpower: Seeing all the atoms
Wouldn't it be great if we could just see all the atoms of all the molecules, any time we wanted?
If we were able to sample something — anything — and just tell what it's made of? Where all its atoms were? Which ones were connected or ready to react?
In about the span of a century, scientists have learned more about molecules and their components than we ever thought possible. In some cases, we can already pick up a bit of dust or a tiny droplet and see where the atoms of its resident molecules are. Or we can calculate predicted structures that are so accurate they can be used to predict function.
In old comic books, this kind of X-ray vision was the stuff of superheroes. Someday, in the not-too-distant future, we might all have it.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.
Join us for a glimpse into the challenges and opportunities of building that future, so we can all scrutinize, predict, build, target and react to all the molecules.
Keywords: Structure, cryo-electron microscopy, microcrystal electron diffraction, alpha fold, tomography, artificial intelligence.
Who should attend: Absolutely everyone should attend. Who doesn't want a superpower?
Theme song: “” by Art Blakey and the Jazz Messengers
This session is literally powered by electrons and photons.
New frontiers in structural biology
The rise of molecular assemblies

Chair: Rebecca Vorhees
Sarah Shahmoradian, University of Texas Southwestern Medical Center
Lorena Saelices, University of Texas Southwestern Medical Center
New approaches enabling structural science
Chair: Jose Rodriguez
Roger Castells–Graells, University of California, Los Angeles
Hosea Nelson, California Institute of Technology
Hong Zhou, University of California, Los Angeles
Seeing the chemistry of life
Chair: Hosea Nelson
Lindsey R. F. Backman, Whitehead Institute for Biomedical Research
Douglas Rees, California Institute of Technology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.