¾ÅÓÎÌåÓý

Journal News

A hormone’s guide to healthy living

Himanshi Bhatia
Nov. 9, 2021

Research in the 20th century showed us the ill effects of our lifestyle choices. Countless studies demonstrated that smoking and drinking were gateways to cancer and other diseases. Scientists now are finding that the modern-day way of life — a sedentary lifestyle and a high-calorie diet — can have equally disastrous health impacts. The constant obsession with has affected our metabolism in a way that makes us more susceptible to developing insulin resistance, thereby leading to Type 2 diabetes.

On the other hand, the human body can synthesize molecules that keep our metabolism in check and prevent it from going awry. These molecules, called , are hormones secreted by fat cells (and other metabolic organs in the body) and serve as the body’s defense mechanism against metabolic anomalies.

A team of researchers in Philipp and Wen-hong ’s labs at the University of Texas Southwestern Medical Center takes a special interest in the physiological effects of adipokines. Toshiharu Onodera, a postdoctoral fellow, said, “We have had a longstanding interest in pancreatic islets with respect to the relationship between adiponectin and the health and functionality of insulin-producing cells because there is a substantial presence of adiponectin receptors in pancreatic beta cells.”

In a published recently in the Journal of Lipid Research, Onodera, Ebrahim Zadeh and their team evaluated the effects of a modified version of an adipokine, adiponectin, on glucose and lipid metabolism.

Hormone-guide-890x534.jpg
Wen-hong Li
PEG linker enhances bioavailability and improves receptor binding.

 

“Adiponectin is a multifaceted protein with beneficial effects on many organs, such as the liver, pancreas, muscles, heart and kidneys,” Onodera said. “These effects are mediated by adiponectin receptors.”

While different ligands (also called adipokine agonists) can activate adiponectin receptors, none of them are clinically useful. One such agonist, AdipoRon, is limited further by its poor solubility and bioavailability.

“In our study,” Onodera said, “we expand on the protective effects of AdipoRon by generating a series of AdipoRon analogs containing amphiphilic ethylene glycol chains.”

In studies of mice that were genetically altered to have low insulin and fed a high-fat diet, the researchers found that their bodies absorbed one of these analogs, AdipoRonPEG5, better than the others, and it effectively reduced toxic lipid species in organs, resulting in dramatically improved therapeutic effect on diabetes and fatty liver disease. After administration of AdipoRonPEG5, the mice had improved blood glucose levels, decreased lipotoxicity in the pancreas, reduced fibrosis in adipose tissue and reduced gluconeogenesis in the liver.

“We believe that we made substantial progress towards the improvement of an existing molecule of importance for diabetes and fatty liver disease,” Onodera said.

Although AdipoRonPEG5 has longer half-life in circulation than its un-PEGylated form, the team was concerned about its frequent dosage, so they administered the agonist to mice twice a day for five days to observe a protective effect. “The next step is to generate longer-acting versions of these adiponectin receptor agonists,” Onodera said.

These findings could present a novel mechanism for the design of diabetes-combating drugs.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Himanshi Bhatia

Himanshi Bhatia is a postdoctoral research associate at the Washington University in St. Louis and is passionate about science communication.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Journal News

Bacterial enzyme catalyzes body odor compound formation

June 27, 2025

Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
Profile

Neurobiology of stress and substance use

June 19, 2025

MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.