¾ÅÓÎÌåÓý

Journal News

How bacteria fight back against promising antimicrobial peptide

Emily Ulrich
May 15, 2025

Antimicrobial peptides have potential in antibiotic drug development, including possible uses in combination with other antibiotics for infections that are difficult to treat. Scientists have shown that the peptide TAT-RasGAP317-326, originally developed as an anticancer compound, inhibits E. coli and Staphylococcus aureus, among other bacteria. The peptide contains residues 317-326 of the Ras GTPase-activating protein, or RasGAP, with an attached N-terminal cell-penetrating sequence from the HIV transactivator of transcription, or TAT, protein, and will be called TAT-RasGAP in this article for simplicity. Maria Georgieva at the University of Lausanne Hospital Center and a team in Switzerland performed a resistance selection experiment over 20 passages to obtain an E. coli strain resistant to TAT-RasGAP to identify mutations that could elucidate this peptide’s mechanism of action. In a recent Journal of Biological Chemistry , they showed that a mutation in BamA, an outer membrane protein critical for the insertion of other membrane proteins, helped block the peptide’s antimicrobial activity.

Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.
David S. Goodsell, RCSB Protein Data Bank, via Wikimedia Commons
Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.

The authors traced the mutation that protects E. coli from TAT-RasGAP to a negatively charged loop in BamA that extends into the extracellular space. The mutation changes a residue from a negative to a neutral charge. The authors hypothesized that the positively charged TAT-RasGAP may interact with this negatively charged loop for cell entry, and a negative-to-neutral mutation could have developed in the resistant strain to block this electrostatic interaction. Modeling and molecular dynamics indicated that BamA’s negatively charged loop likely interacts with the peptide.

However, further experiments showed that TAT-RasGAP does not produce the same  changes as known BamA inhibitors based on bacterial morphology viewed by brightfield microscopy and outer membrane protein quantification, indicating that BamA is unlikely inhibited by TAT-RasGAP. Future experiments will help resolve the full mechanism of action for TAT-RasGAP and could lead to novel antibiotics.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How sugars shape Marfan syndrome
Journal News

How sugars shape Marfan syndrome

Sept. 10, 2025

Research from the University of Georgia shows that Marfan syndrome–associated fibrillin-1 mutations disrupt O glycosylation, revealing unexpected changes that may alter the protein's function in the extracellular matrix.

What’s in a diagnosis?
Essay

What’s in a diagnosis?

Sept. 4, 2025

When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Annual Meeting

Peer through a window to the future of science

Sept. 3, 2025

Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
Journal News

Glow-based assay sheds light on disease-causing mutations

Sept. 2, 2025

University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent ¾ÅÓÎÌåÓý paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent ¾ÅÓÎÌåÓý paper.