¾ÅÓÎÌåÓý

Journal News

Pathogen-derived enzyme engineered for antibiotic design

Emily Ulrich
Aug. 6, 2025

The World Health Organization classified the drug-resistant pathogen Acinetobacter baumannii as a critical priority for antibiotic development. One development strategy targets the production of acinetobactin, the A. baumannii siderophore, or iron chelator, that allows the pathogen to scavenge for the scarce iron nutrient inside the host. Scientists have previously determined that synthetic analogs of acinetobactin can curb bacterial growth by blocking iron uptake or inhibiting acinetobactin formation. To aid in analog production, Syed Fardin Ahmed and Andrew Gulick at the University at Buffalo wanted to leverage A. baumannii enzymes that biosynthesize acinetobactin. They published their recent in the Journal of Biological Chemistry.

Janice Haney Carr via the Centers for Disease Control and Prevention Public Health Image Library Scanning electron microscopy image of clusters of aerobic, Gram-negative, non-motile, Acinetobacter baumannii bacteria.
Janice Haney Carr via the Centers for Disease Control and Prevention Public Health Image Library
Scanning electron microscopy image of clusters of aerobic, Gram-negative, non-motile, Acinetobacter baumannii bacteria.

Acinetobactin biosynthesis involves an assembly line process performed by nonribosomal peptide synthetases. In these biosynthetic pathways, an adenylation domain plays a key role in substrate selectivity. The authors used available structures of the acinetobactin adenylation domain BasE to pinpoint residues to mutate in the substrate binding pocket to alter the size and allow for molecules larger than the natural substrate 2,3-dihydroxybenzoic acid. They performed enzyme activity assays and steady-state kinetic analysis to identify and characterize four BasE variants that functioned with larger substrates with efficiencies similar to the wild-type enzyme with the natural substrate.

Finally, the researchers solved the structures of three BasE variants with alternative substrates in the binding pockets. These structures confirmed visually that the mutations enlarged the binding pockets, highlighting which BasE residues contribute to accommodating specific portions of the substrate chemical structure.

Future steps will include completing a combined chemical and enzymatic synthesis of acinetobactin analogs and testing their activity for bacterial growth inhibition. The authors anticipate that their detailed investigation of BasE substrate selectivity will advance the discovery of siderophore-inspired antibiotics.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How sugars shape Marfan syndrome
Journal News

How sugars shape Marfan syndrome

Sept. 10, 2025

Research from the University of Georgia shows that Marfan syndrome–associated fibrillin-1 mutations disrupt O glycosylation, revealing unexpected changes that may alter the protein's function in the extracellular matrix.

What’s in a diagnosis?
Essay

What’s in a diagnosis?

Sept. 4, 2025

When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Annual Meeting

Peer through a window to the future of science

Sept. 3, 2025

Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
Journal News

Glow-based assay sheds light on disease-causing mutations

Sept. 2, 2025

University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent ¾ÅÓÎÌåÓý paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent ¾ÅÓÎÌåÓý paper.