
Microbial engines of global change
Right now, redox cycling of the elements is happening on a genuinely global scale. These cycles are driven by the intricate electron-transfer chemistry of microbial organisms. Whether engaging in the molecular construction projects of the carbon, nitrogen or sulfur cycles or simply moving electrons to make a bioenergetic living, these smallest of creatures harness metals as cofactors to cycle and recycle the environment around us continuously.
Our symposia at the ¾ÅÓÎÌåÓý annual meeting — now called — in Seattle in March will cover several topics relating to the biochemistry and microbiology of elemental cycling, where complex metalloenzymes often are used to achieve startling transformations. Recently elucidated mechanisms, insight into how metallocofactors are harnessed to power the redox reactions of life around us, and surprising insights into the connections between metals, microbes and electrons all will be discussed.
With concerns for sustainability and a new energy economy, the microscopic world of biological chemistry has much to teach us.
Keywords: Metalloenzymes, enzyme mechanisms, microbiology, biochemistry, biogeochemistry.
Who should attend: All who are fascinated by how microorganisms shape the world around us and how the environment, in turn, shapes microbial biochemistry.
Theme song: “Electric Boogie (The Electric Slide)” by Marcia Griffiths.
This session is powered by electrons, and so are you.
Speakers
The enzymology of the carbon cycle
Jennifer Dubois (chair), Montana State University
Stephen Ragsdale, University of Michigan
Sean Elliott, Boston University
Cecilia Gomez Martinez, University of California, Berkeley
Kylie Allen, Virginia Tech
Frontiers of the nitrogen cycle
Eric Hegg (chair), Michigan State University
Yilin Hu, University of California, Irvine
Lisa Stein, University of Alberta
Akif Tezcan, University of California, San Diego
Metals, microbes and minerals
Sean Elliott (chair), Boston University
Eric Boyd, Montana State University
Jennifer Dubois, Montana State University
Jeff Gralnick, University of Minnesota
Christine Morrison, Colorado School of Mines
The complete list
Learn about all 11 symposia planned for Discover BMB 2023:- Protein Machines and Disorder
- Regulation of RNA
- Organelles, Mechanisms and Phase Properties of Cellular Quality Control
- Lipid Dynamics and Signals in Membrane and Protein Structure
- Frontiers in Carbohydrate Synthesis and Recognition
- Bias In, Bias Out in Data Science
- Cell Signaling — New Tools and Emerging Concepts
- Education and Professional Development
- Biochemistry of Elemental Cycling
- Advances in Organismal and Cellular Metabolism
- Artificial Intelligence and Machine Learning in Structural Biology, Drug Design and Systems Biology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.